Structural and algorithmic aspects of identification problems in graphs

Thèse présentée à l'Université Clermont Auvergne, France École Doctorale des Sciences Pour l'Ingénieur, Unité de recherche: LIMOS

Auteur :	Dipayan CHAKRABORTY
Directrice de thèse :	Annegret WAGLER
Co-encadrant :	Florent FOUCAUD
Co-encadrant :	Michael HENNING

Date de soutenance : 09 decembre 2024 pour obtenir le grade de Docteur (spécialité : informatique)

Devant le jury composé de :

Annegret WAGLER	Professeure, Univ
Florent FOUCAUD	Maître de confére
Michael HENNING	Professeur, Univ
Paul DORBEC	Professeur, Univ
Ralf KLASING	Directeur de Rec
Tero LAIHONEN	Professeur, Univ
Arnaud PÊCHER	Professeur, Univ

Professeure, Université Clermont Auvergne Maître de conférences, Université Clermont Auvergne Professeur, University of Johannesburg Professeur, Université de Caen-Normandie Directeur de Recherche, CNRS, Université de Bordeaux Professeur, University of Turku Professeur, Université de Bordeaux Directrice Co-encadrant Co-encadrant Examinateur Rapporteur Rapporteur

(Dipayan Chakraborty)

Identification problems in graphs

1 Part I. Introduction: Identification problems in graphs

2 Part II. Structural aspects of identification problems in graphs

⁽³⁾ Part III. Algorithmic aspects of identification problems in graphs

-∢ ≣ ▶

Part I. Introduction: Identification problems in graphs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

 $\frac{\text{Open neighborhood:}}{N(v) = \{u : uv \in E\}}$ $N(7) = \{6, 8, 10\}$

 $\frac{\text{Closed neighborhood:}}{N[v] = N(v) \cup \{v\}}$ $N[7] = \{6, 8, 10, 7\}$

"Code" C = set of black vertices

Graph
$$G = (V, E)$$

 $\frac{\text{Open neighborhood:}}{N(v) = \{u : uv \in E\}}$ $N(7) = \{6, 8, 10\}$

 $\frac{\text{Closed neighborhood:}}{N[v] = N(v) \cup \{v\}}$ $N[7] = \{6, 8, 10, 7\}$

"**Code**" C = set of black vertices

(1) A detector can monitor up to distance 1

 $\frac{\text{Open neighborhood:}}{N(v) = \{u : uv \in E\}}$ $N(7) = \{6, 8, 10\}$

 $\frac{\text{Closed neighborhood:}}{N[v] = N(v) \cup \{v\}}$ $N[7] = \{6, 8, 10, 7\}$

"**Code**" C = set of black vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$

 $\frac{\text{Open neighborhood:}}{N(v) = \{u : uv \in E\}}$ $N(7) = \{6, 8, 10\}$

 $\frac{\text{Closed neighborhood:}}{N[v] = N(v) \cup \{v\}}$ $N[7] = \{6, 8, 10, 7\}$

"**Code**" C = set of black vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$ **Total-dominating set:** A set $C \subseteq V$ such that $N(v) \cap C \neq \emptyset$ for all $v \in V$

Graph
$$G = (V, E)$$

 $\frac{\text{Open neighborhood:}}{N(v) = \{u : uv \in E\}}$ $N(7) = \{6, 8, 10\}$

 $\frac{\text{Closed neighborhood:}}{N[v] = N(v) \cup \{v\}}$ $N[7] = \{6, 8, 10, 7\}$

"**Code**" C = set of black vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$ **Total-dominating set:** A set $C \subseteq V$ such that $N(v) \cap C \neq \emptyset$ for all $v \in V$

(2) A detector can distinguish between itself and a neighbor

 $\frac{\text{Open neighborhood:}}{N(v) = \{u : uv \in E\}}$ $N(7) = \{6, 8, 10\}$

 $\frac{\text{Closed neighborhood:}}{N[v] = N(v) \cup \{v\}}$ $N[7] = \{6, 8, 10, 7\}$

"**Code**" C = set of black vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$ **Total-dominating set:** A set $C \subseteq V$ such that $N(v) \cap C \neq \emptyset$ for all $v \in V$

 $\left(2\right)$ A detector can distinguish between itself and a neighbor

 $\frac{\text{Open neighborhood:}}{N(v) = \{u : uv \in E\}}$ $N(7) = \{6, 8, 10\}$

 $\frac{\text{Closed neighborhood:}}{N[v] = N(v) \cup \{v\}}$ $N[7] = \{6, 8, 10, 7\}$

"**Code**" C = set of black vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$ **Total-dominating set:** A set $C \subseteq V$ such that $N(v) \cap C \neq \emptyset$ for all $v \in V$

 $\left(2\right)$ A detector can distinguish between itself and a neighbor

 $\frac{\text{Open neighborhood:}}{N(v) = \{u : uv \in E\}}$ $N(7) = \{6, 8, 10\}$

 $\frac{\text{Closed neighborhood:}}{N[v] = N(v) \cup \{v\}}$ $N[7] = \{6, 8, 10, 7\}$

"Code" C = set ofblack vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$ **Total-dominating set:** A set $C \subseteq V$ such that $N(v) \cap C \neq \emptyset$ for all $v \in V$

(2) A detector can distinguish between itself and a neighbor

 $\frac{\text{Open neighborhood:}}{N(v) = \{u : uv \in E\}}$ $N(7) = \{6, 8, 10\}$

 $\frac{\text{Closed neighborhood:}}{N[v] = N(v) \cup \{v\}}$ $N[7] = \{6, 8, 10, 7\}$

"Code" C = set ofblack vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$ **Total-dominating set:** A set $C \subseteq V$ such that $N(v) \cap C \neq \emptyset$ for all $v \in V$

Locating set: A set $C \subseteq V$ such that $N(u) \cap C \neq N(v) \cap C \iff (N(u) \triangle N(v)) \cap C \neq \emptyset$ for all $u, v \in V \setminus C$ Open-separator A vertex subset C of a graph G is called...

Locating set: if $(N(u) \triangle N(v)) \cap C \neq \emptyset$ for all $u, v \in V \setminus C$

No faults in detectors: Detectors can distinguish between its vertex and its neighbor

Closed-separating set: if $(N[u] \triangle N[v]) \cap C \neq \emptyset$ for all $u, v \in V$

Detector fault type 1: Detector cannot distinguish between itself and its neighbors

Open-separating set: if $(N(u) \triangle N(v)) \cap C \neq \emptyset$ for all $u, v \in V$ Detector fault type 2: Detector is completely disabled / destroyed

Full-separating set: if $(N[u] \triangle N[v]) \cap C = (N(u) \triangle N(v)) \cap C \neq \emptyset$ for all $u, v \in V$

Detector fault type 1 and detector fault type 2

イロト イヨト イヨト イヨト 三臣

Sep	L-Sep	C-Sep	O-Sep	F-Sep
adj	$N(u) \bigtriangleup N(v)$	$N[u] \wedge N[v]$	$N(y) \wedge N(y)$	N[u] riangle N[v]
non-adj	$N[u] \bigtriangleup N[v]$	$[1, [\alpha] \bigtriangleup [1, [0]]$	$ (a) \Delta W(b) $	$N(u) \bigtriangleup N(v)$

A code C must intersect the following sets...

2

メロト メタト メヨト メヨト

Sep	L-Sep		C-	Sep	0-	Sep	F-	Sep
Code	LD	LTD	CD	CTD	OD	OTD	FD	FTD
adj	$N(u) \bigtriangleup N(v)$		$N[a_1] \wedge N[a_2]$		$N(\alpha) \wedge N(\alpha)$		N[u] riangle N[v]	
non-adj	N[u]	$\triangle N[v]$	$\mathbb{N}[u] \bigtriangleup \mathbb{N}[v]$		N(u) riangle N(v)		$N(u) \bigtriangleup N(v)$	
D/TD	N[u]	N(u)	N[u]	N(u)	N[u]	N(u)	N[u]	N(u)
	Locating-dominating	Locating total-dominating	Closed-separating dominating	Closed-separating total-dominating	Open-separating dominating	Open-separating total-dominating	Full-separating dominating	Full-separating total-dominating

A code C must intersect the following sets...

Sep	L-Sep		C-Sep		O-Sep		F-Sep		
Code	LD	LTD	CD CTD		OD	OTD	FD	FTD	
adj	N(u)	$\bigtriangleup N(v)$	N[u] riangle N[v]		$N(u) \bigtriangleup N(v)$		$N[u] \bigtriangleup N[v]$		
non-adj	N[u]	$\triangle N[v]$					$N(u) \bigtriangleup N(v)$		
D/TD	N[u]	N(u)	N[u]	N(u)	N[u]	N(u)	N[u]	N(u)	
		-	-						

A code C must intersect the following sets...

Existence of codes...

Codes	LD	LTD	OD	OTD	CD	CTD	FD	FTD
no isolated vertices		x		x		x		х
no open twins			x	x			x	x
no closed twins					x	x	x	х

N(u) = N(v)	$\iff N(u) \bigtriangleup N(v) = \emptyset$
N[u] = N[v]	$\iff N[u] \bigtriangleup N[v] = \emptyset$

Year	Code	Authors		
1988:	LD-code	P. Slater		
1998:	CD-code	M. Karpovsky, K. Chakrabarty & L. Levitin		
2002 :	OTD code	I. Honkala, T. Laihonen, S Ranto		
2010:	UTD-code	S. Seo & P. Slater		
LTD-code		T Harring & Hanning & I Harrand		
2000:	ITD-code	1. Haynes, M. Hemning & J. Howard		
	OD-code			
2024:	FD-code	D. Chakraborty & A. Wagler		
	FTD-code			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

 $X \in CODES = \{LD, LTD, CD, CTD, OD, OTD, FD, FTD\}$ **X-number**: $\gamma^X(G) = \min\{|C| : C \text{ is an X-code of } G\}$ **Domination number**: $\gamma(G) = \min\{|C| : C \text{ is a dominating set of } G\}$ **Total-domination number**: $\gamma_t(G) = \min\{|C| : C \text{ is a total-dominating set of } G\}$

 $\begin{array}{lll} \gamma(G) & \leq & \gamma^{\mathcal{X}}(G) & \text{if X is based on domination} \\ \gamma_t(G) & \leq & \gamma^{\mathcal{X}}(G) & \text{if X is based on total-domination} \end{array}$

ъ

- ∢ ≣ →

< (T) >

(Dipayan Chakraborty)

Identification problems in graphs

9/38

《曰》《圖》《臣》《臣》 三臣

Part II. Structural aspects of identification problems in graphs

Locating dominating codes on subcubic graphs...

— joint work with Anni Hakanen and Tuomo Lehtilä

(University of Turku, Finland)

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$.

Locating set: A set $C \subseteq V$ such that $N(u) \cap C \neq N(v) \cap C \iff (N(u) \triangle N(v)) \cap C \neq \emptyset$ for all $u, v \in V \setminus C$.

Subcubic graph: A graph in which each vertex is of degree at most 3. **Cubic graph:** A graph in which each vertex is of degree exactly 3.

Conjecture (Garijo, González & Márques, 2014)

If a connected graph G on n vertices is twin-free, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$

Theorem (Ore, 1962)

If G is a connected graph on n vertices, then $\gamma(G) \leq \frac{n}{2}$.

イロト 不同 とくほと 不同 とう

The *n*-half conjecture is true for...

Theorem (Bousquet, Chuet, Falgas-Ravry, Jacques, Morelle, 2024) If G is a connected twin-free graph on n vertices, then $\gamma^{\text{LD}}(G) \leq \lceil \frac{5}{8}n \rceil$. Theorem (Foucaud and Henning, 2016)

If G is a twin-free, cubic graph of order n, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Question (Foucaud and Henning, 2016)

Can we allow twins for cubic graphs? except $G \not\cong K_4, K_{3,3}$...???

Question (Foucaud and Henning, 2016)

Is the conjecture true for subcubic graphs?

Theorem (Foucaud and Henning, 2016)

If G is a twin-free, cubic graph of order n, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Question (Foucaud and Henning, 2016)

Can we allow twins for cubic graphs? except $G \cong K_4, K_{3,3}, \dots$??? ANSWER: **YES**; except $G \cong K_4, K_{3,3}$. [C., Hakanen & Lehtilä, 2024]

Question (Foucaud and Henning, 2016)

Is the conjecture true for subcubic graphs? ANSWER: **YES**; also with closed twins and degree 3 open twins. [C., Hakanen & Lehtilä, 2024]

イロト 不同 とくほと 不同 とう

Let $G \cong K_{3,3}$ be a connected subcubic graph on *n* vertices, with at least 7 edges, and without open twins of degree 1 or 2. Then, $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

If a connected subcubic graph G on n vertices is twin-free, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Theorem (C., Hakanen and Lehtilä, 2024)

Let $G \not\cong K_{3,3}$ be a connected subcubic graph on *n* vertices, with at least 7 edges, and without open twins of degree 1 or 2. Then, $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

If a connected subcubic graph G on n vertices is twin-free, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Theorem (C., Hakanen and Lehtilä, 2024)

If G is a connected, open-twin-free, subcubic graph on n vertices other than K_3 or K_4 , then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Theorem (C., Hakanen and Lehtilä, 2024)

Let $G \cong K_{3,3}$ be a connected subcubic graph on *n* vertices, with at least 7 edges, and without open twins of degree 1 or 2. Then, $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

ヘロト 人間ト 人団ト 人団ト

If a connected subcubic graph G on n vertices is twin-free, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Proof technique.

• Proof by induction on n + m; m = |E|. Determine that result is true for some "smallest" n + m.

If a connected subcubic graph G on n vertices is twin-free, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

- Proof by induction on n + m; m = |E|. Determine that result is true for some "smallest" n + m.
- Cut a convenient part of the graph.

If a connected subcubic graph G on n vertices is twin-free, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

- Proof by induction on n + m; m = |E|. Determine that result is true for some "smallest" n + m.
- Cut a convenient part of the graph.

If a connected subcubic graph G on n vertices is twin-free, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

- Proof by induction on n + m; m = |E|. Determine that result is true for some "smallest" n + m.
- Cut a convenient part of the graph.
- If rest is twin-free, choose a desired solution.

If a connected subcubic graph G on n vertices is twin-free, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

- Proof by induction on n + m;
 m = |E|. Determine that result is true for some "smallest" n + m.
- Cut a convenient part of the graph.
- If rest is twin-free, choose a desired solution.
Theorem (C., Hakanen and Lehtilä, 2024)

If a connected subcubic graph G on n vertices is twin-free, then $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Proof technique.

- Proof by induction on n + m; m = |E|. Determine that result is true for some "smallest" n + m.
- Cut a convenient part of the graph.
- If rest is twin-free, choose a desired solution.
- If not twin-free, choose another part to cut and proceed.

Theorem (C., Hakanen and Lehtilä, 2024)

Let $G \ncong K_{3,3}$ be a connected subcubic graph on *n* vertices, with at least 7 edges, and without open twins of degree 1 or 2. Then, $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Proof idea.

Identification problems in graphs

Subcubic graph with degree 1 open twins not satisfying the conjecture.

Subcubic graph with degree 2 open twins not satisfying the conjecture.

– joint work with Florent Foucaud, Aline Parreau and Annegret Wagler

(Université Clermont Auvergne / Université Lyon 1)

Theorem (C., Foucaud, Parreau and Wagler, 2024)

For a connected twin-free block graph G on n vertices, $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Proof sketch.

Identification problems in graphs

— joint work with Florent Foucaud, Aline Parreau and Annegret Wagler

(Université Clermont Auvergne / Université Lyon 1)

Theorem (C., Foucaud, Parreau and Wagler, 2024)

For a connected twin-free block graph G on n vertices, $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Proof sketch.

(Dipayan Chakraborty)

• Partition V into two parts **R** and **B**.

— joint work with Florent Foucaud, Aline Parreau and Annegret Wagler

(Université Clermont Auvergne / Université Lyon 1)

Theorem (C., Foucaud, Parreau and Wagler, 2024)

For a connected twin-free block graph G on n vertices, $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Proof sketch.

- Partition V into two parts **R** and **B**.
- Both \mathbf{R} and \mathbf{B} are LD codes of G.

— joint work with Florent Foucaud, Aline Parreau and Annegret Wagler

(Université Clermont Auvergne / Université Lyon 1)

Theorem (C., Foucaud, Parreau and Wagler, 2024)

For a connected twin-free block graph G on n vertices, $\gamma^{\text{LD}}(G) \leq \frac{n}{2}$.

Proof sketch.

- Partition V into two parts **R** and **B**.
- Both \mathbf{R} and \mathbf{B} are LD codes of G.
- Either one of $|\mathbf{R}|$ or $|\mathbf{B}| \le \frac{1}{2}n$.

Theorem (Cockayne, Dawes & Hedetniemi, 1980)

If G is a connected graph on n vertices, then $\gamma_t(G) \leq \frac{2}{3}n$.

Conjecture (Foucaud & Henning, 2016)

If a connected graph G on n vertices is twin-free, then $\gamma^{\text{LTD}}(G) \leq \frac{2}{3}n$

²/₃-bound for locating total-dominating codes...
— joint work with F. Foucaud, A. Hakanen, M. Henning & A. Wagler
(Université Clermont Auvergne / Univ. of Johannesburg/ Univ. of Turku)

Theorem (C., Foucaud, Hakanen, Henning & Wagler, 2024)

If G is a connected subcubic graph on n vertices such that $G \not\cong K_1, K_2, K_4, K_{1,3}$, then $\gamma^{\text{LTD}}(G) \leq \frac{2}{3}n$.

Theorem (C., Foucaud, Hakanen, Henning & Wagler, 2024)

If G is a connected, twin-free block graph on n vertices, then $\gamma^{\rm LTD}(G) \leq \frac{2}{3}n.$

イロト イヨト イヨト イヨト

Part III. Algorithmic aspects of identification problems in graphs

X-CODE **Input:** (G, k): A graph G and a positive integer k. **Question:** Does there exist an X-code C of G such that $|C| \le k$?

23 / 38

X-CODE is NP-hard for all $X \in CODES!$

NP-hardness related to FD- and FTD-codes

— joint work with Annegret Wagler

(Université Clermont Auvergne)

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$.

Total-dominating set: A set $C \subseteq V$ such that $N(v) \cap C \neq \emptyset$ for all $v \in V$.

Full-separating set: if $(N[u] \triangle N[v]) \cap C = (N(u) \triangle N(v)) \cap C \neq \emptyset$ for all $u, v \in V$.

Theorem (C. and Wagler, 2024)

If a graph G admits an FTD-code, then $\gamma^{\text{FTD}}(G) - 1 \leq \gamma^{\text{FD}}(G) \leq \gamma^{\text{FTD}}(G)$.

(a) $\gamma^{\text{FTD}}(G) = n$

(b) $\gamma^{\mathrm{FD}}(G) = n - 1$

ロト (日) (王) (王) (王) (日)

FD-CODE **Input:** (G, k): A graph G and a positive integer k. **Question:** Does there exist an FD-code C of G such that $|C| \le k$?

FTD-CODE **Input:** (G, k): A graph G and a positive integer k. **Question:** Does there exist an FTD-code C of G such that $|C| \le k$?

FD = FTD - 1 **Input:** A graph G and an integer k. **Question:** Is $\gamma^{\text{FTD}}(G) = k$ and $\gamma^{\text{FD}}(G) = k - 1$?

ヘロマ ヘロマ ヘロマ

FD-CODE [NP-hard] Input: (G, k): A graph G and a positive integer k. Question: Does there exist an FD-code C of G such that $|C| \le k$?

FTD-CODE(NP-hard!)Input: (G, k): A graph G and a positive integer k.Question: Does there exist an FTD-code C of G such that $|C| \le k$?

FD = FTD - 1 **Input:** A graph G and an integer k. **Question:** Is $\gamma^{\text{FTD}}(G) = k$ and $\gamma^{\text{FD}}(G) = k - 1$?

イロト イヨト イヨト イヨト

FTD-CODE is NP-complete.

Proof sketch.

Reduction from 3-SAT with formula ψ on n variables and m clauses. E.g. $\psi = (x \lor \neg y \lor z) \land (\neg x \lor \neg z \lor w) \land (\neg y \lor z \lor \neg w).$

FTD-CODE is NP-complete.

Proof sketch.

Reduction from 3-SAT with formula ψ on n variables and m clauses. E.g. $\psi = (x \lor \neg y \lor z) \land (\neg x \lor \neg z \lor w) \land (\neg y \lor z \lor \neg w).$ ψ satisfiable $\iff (G^{\psi}, k = 7n + 2m)$ is YES-instance of FTD-CODE

FTD-CODE is NP-complete.

Proof sketch.

Reduction from 3-SAT with formula ψ on n variables and m clauses. E.g. $\psi = (x \lor \neg y \lor z) \land (\neg x \lor \neg z \lor w) \land (\neg y \lor z \lor \neg w).$ ψ satisfiable $\iff (G^{\psi}, k = 7n + 2m)$ is YES-instance of FTD-CODE ψ satisfiable $\implies \exists C$ such that $|C| = \gamma^{\text{FTD}}(G^{\psi}) = k$

FTD-CODE is NP-complete.

Proof sketch.

Reduction from 3-SAT with formula ψ on n variables and m clauses. E.g. $\psi = (x \lor \neg y \lor z) \land (\neg x \lor \neg z \lor w) \land (\neg y \lor z \lor \neg w).$ ψ satisfiable $\iff (G^{\psi}, k = 7n + 2m)$ is YES-instance of FTD-CODE ψ satisfiable $\iff \exists C$ such that $|C| = \gamma^{\text{FTD}}(G^{\psi}) = k$

FTD-CODE is NP-complete.

Proof sketch.

 $\begin{array}{l} \mbox{Reduction from 3-SAT with formula } \psi \mbox{ on } n \mbox{ variables and } m \mbox{ clauses.} \\ \mbox{E.g. } \psi = (x \lor \neg y \lor z) \land (\neg x \lor \neg z \lor w) \land (\neg y \lor z \lor \neg w). \\ \psi \mbox{ satisfiable } \Longleftrightarrow \ (G^\psi, k = 7n + 2m) \mbox{ is YES-instance of FTD-CODE} \\ \psi \mbox{ satisfiable } \Leftarrow \exists C \mbox{ such that } |C| = \gamma^{\mbox{FTD}}(G^\psi) = k \\ \end{array}$

 ψ satisfiable $\iff (G^{\psi}, 7n + 2m - 1)$ is YES-instance of FD-CODE

X-CODE **Input:** (G, k): A graph G and a positive integer k. **Question:** Does there exist an X-code C of G such that $|C| \le k$?

X-CODE is NP-hard for all $X \in CODES!$

X-Code

Input: (G, k): A graph G and a positive integer k. **Question:** Does there exist an X-code C of G such that $|C| \le k$?

X-CODE is NP-hard for all $X \in CODES!$

What about *Fixed Parameter Tractable* (FPT) algorithms? i.e. given a graph parameter k, can we find an algorithm to find a minimum code in time $f(k) \cdot n^{O(1)}$? e.g. $f(k) = 2^k, 2^{k^2}, 2^{2^k} \dots$

X-Code

Input: (G, k): A graph G and a positive integer k. **Question:** Does there exist an X-code C of G such that $|C| \le k$?

X-CODE is NP-hard for all $X \in CODES!$

What about *Fixed Parameter Tractable* (FPT) algorithms? i.e. given a graph parameter k, can we find an algorithm to find a minimum code in time $f(k) \cdot n^{O(1)}$? e.g. $f(k) = 2^k, 2^{k^2}, 2^{2^k} \dots$

Note: X-CODE is FPT when parameterized by solution size k. **Reason:** $|V(G)| = O(2^k)$. Thus brute force gives $2^{O(k^2)} \cdot n^{O(1)}$ runtime.

FPT algorithms for locating dominating code joint work with Florent Foucaud, Diptapriyo Majumdar and Prafullkumar Tale (Université Clermont Auvergne / IIIT Delhi / IISER Bhopal)

Vertex cover: A set $S \subset V$ such that $V \setminus S$ is an independent set. Vertex cover number: $vc = min\{|S| : S \text{ is a vertex cover of } G\}$

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\texttt{opt}[i, \mathcal{P}, S] = \min \begin{cases} \texttt{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \texttt{opt}[i-1, \mathcal{P}', S']. & \texttt{opt}[i, \mathcal{P}, S] = \min |C|, \\ C \subset \{r_1, r_2, \dots, r_i\}, \\ C \rightsquigarrow (\mathcal{P}, S) \end{cases}$$

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\texttt{opt}[i, \mathcal{P}, S] = \min \begin{cases} \texttt{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \texttt{opt}[i-1, \mathcal{P}', S']. & \texttt{opt}[i, \mathcal{P}, S] = \min |C|, \\ C \subset \{r_1, r_2, \dots, r_i\}, \\ C \rightsquigarrow (\mathcal{P}, S) \end{cases}$$

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\texttt{opt}[i, \mathcal{P}, S] = \min \begin{cases} \texttt{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \texttt{opt}[i-1, \mathcal{P}', S']. & \texttt{opt}[i, \mathcal{P}, S] = \min |C|, \\ C \subset \{r_1, r_2, \dots, r_i\}, \\ C \rightsquigarrow (\mathcal{P}, S) \end{cases}$$

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\texttt{opt}[i, \mathcal{P}, S] = \min \begin{cases} \texttt{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \texttt{opt}[i-1, \mathcal{P}', S']. & \texttt{opt}[i, \mathcal{P}, S] = \min |C|, \\ C \subset \{r_1, r_2, \dots, r_i\}, \\ C \rightsquigarrow (\mathcal{P}, S) \end{cases}$$

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\texttt{opt}[i, \mathcal{P}, S] = \min \begin{cases} \texttt{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \texttt{opt}[i-1, \mathcal{P}', S']. & \texttt{opt}[i, \mathcal{P}, S] = \min |C|, \\ C \subset \{r_1, r_2, \dots, r_i\}, \\ C \rightsquigarrow (\mathcal{P}, S) \end{cases}$$

• Algorithm **brute forces** all partitions of vertex cover.

undominated R r_1 r_2 r_3 r_4 r_5 r_6 r_7 r_8 r_9

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\texttt{opt}[i, \mathcal{P}, S] = \min \begin{cases} \texttt{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \texttt{opt}[i-1, \mathcal{P}', S']. & \texttt{opt}[i, \mathcal{P}, S] = \min |C|, \\ C \subset \{r_1, r_2, \dots, r_i\}, \\ C \rightsquigarrow (\mathcal{P}, S) \end{cases}$$

• Algorithm **brute forces** all partitions of vertex cover.

undominated R r_1 r_2 r_3 r_4 r_5 r_6 r_7 r_8 r_9

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\texttt{opt}[i, \mathcal{P}, S] = \min \begin{cases} \texttt{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \texttt{opt}[i-1, \mathcal{P}', S']. & \texttt{opt}[i, \mathcal{P}, S] = \min |C|, \\ C \subset \{r_1, r_2, \dots, r_i\}, \\ C \rightsquigarrow (\mathcal{P}, S) \end{cases}$$

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\texttt{opt}[i, \mathcal{P}, S] = \min \begin{cases} \texttt{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \texttt{opt}[i-1, \mathcal{P}', S']. & \texttt{opt}[i, \mathcal{P}, S] = \min |C|, \\ C \subset \{r_1, r_2, \dots, r_i\}, \\ C \rightsquigarrow (\mathcal{P}, S) \end{cases}$$

• Algorithm **brute forces** all partitions of vertex cover.

undominated R r_1 r_2 r_3 r_4 r_5 r_6 r_7 r_8 r_9

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\texttt{opt}[i, \mathcal{P}, S] = \min \begin{cases} \texttt{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \texttt{opt}[i-1, \mathcal{P}', S']. & \texttt{opt}[i, \mathcal{P}, S] = \min |C|, \\ C \subset \{r_1, r_2, \dots, r_i\}, \\ C \rightsquigarrow (\mathcal{P}, S) \end{cases}$$

• Algorithm **brute forces** all partitions of vertex cover.

undominated r_1 r_2 r_3 r_4 r_5 r_6 r_7 r_8 r_9

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\mathsf{opt}[i,\mathcal{P},S] = \min \begin{cases} \mathsf{opt}[i-1,\mathcal{P},S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \mathsf{opt}[i-1,\mathcal{P}',S']. & \mathbf{Running time:} \\ \mathcal{P}: \ 2^{\mathsf{vc}\log\mathsf{vc}} \cdot |R| \\ S: \ 2^{\mathsf{vc}} \end{cases}$$

• Algorithm **brute forces** all partitions of vertex cover.

(Dipayan Chakraborty)

Conclusion

프 🖌 🛪 프 🕨

2

- Introduction of new codes: **OD**, **FD** and **FTD**.
- Proving several **combinatorial conjectures** and **results on bounds** of all eight code numbers of graphs.
- Such results have been proven on several graph classes like **subcubic**, **block**, **split**, **cobipartite**, **trees**, **triangle-free** etc.
- NP-hardness related results for the new codes introduced.
- **FPT-algorithms** for LD-CODE with respect to several graph parameters.
- **Tight lower bounds** for running times of algorithms of LD-CODE under well-accepted hardness hypothesis.

→ ∃ →
Question (Conjecture: Garijo, González & Márques, 2014)

Can the n-half conjecture $(\gamma^{\text{LD}}(G) \leq \frac{n}{2})$ be proven in general?

Question (Conjecture: Foucaud & Henning, 2016)

Can the n-two-thirds conjecture $(\gamma^{\text{LTD}}(G) \leq \frac{2}{3}n)$ be proven in general?

Question

What is the characterization of (twin-free) (sub)cubic graphs for which the above conjectures are tight?

Question

Can the FD = FTD - 1 problem be polynomial-time solvable on some graph classes? For example, for trees?

Question

Can the OD = OTD - 1 problem be polynomial-time solvable on some graph classes?

Question

FPT-algorithms for other codes (especially, the newer ones) in terms of graph parameters like vertex cover number, treewidth, etc?

Sep	L-Sep		C-Sep		O-Sep		F-Sep	
Code	LD	LTD	CD	CTD	OD	OTD	FD	FTD
adj	N(u)	$\bigtriangleup N(v)$	- N[u] riangle N[v]		$N(u) \bigtriangleup N(v)$		$N[u] \bigtriangleup N[v]$	
non-adj	N[u]	$\bigtriangleup N[v]$					$N(u) \bigtriangleup N(v)$	
D/TD	N[u]	N(u)	N[u]	N(u)	N[u]	N(u)	N[u]	N(u)

A code must intersect the following sets...

< D > < B >

프 > (프 >

	Sep	L-Sep		C-Sep		O-Sep		F-Sep	
	Code	LLD	LLTD	CD	CTD	OD	OTD	FD	FTD
	adj	$N(u) \bigtriangleup N(v)$		$N[u] \bigtriangleup N[v]$		$N(u) \bigtriangleup N(v)$		$N[u] \bigtriangleup N[v]$	
r	non-adj	V						$N(u) \bigtriangleup N(v)$	
	D/TD	N[u]	N(u)	N[u]	N(u)	N[u]	N(u)	N[u]	N(u)

A code must intersect the following sets...

< D > < B >

프 > (프 >

subset	Abbvr.	dist-1 separators	dist-2+ separators	nbhd
1	V. subset	$\{V(G)\}$	$\{V(G)\}$	$\{V(G)\}$
2	D-set	$\{V(G)\}$	$\{V(G)\}$	N[u]
3	TD-set	$\{V(G)\}$	$\{V(G)\}$	N(u)
4	CS-set	N[u] riangle N[v], u, v adj	N[u] riangle N[v], u, v non-adj	$\{V(G)\}$
5	OS-set	$N(u) \bigtriangleup N(v), u, v \text{ adj}$	$N(u) \bigtriangleup N(v), u, v$ non-adj	$\{V(G)\}$
6	LS-set	$N(u) \bigtriangleup N(v), u, v \text{ adj}$	N[u] riangle N[v], u, v non-adj	$\{V(G)\}$
7	FS-set	N[u] riangle N[v], u, v adj	$N(u) \bigtriangleup N(v), u, v$ non-adj	$\{V(G)\}$
8	LCS-set	N[u] riangle N[v], u, v adj	$\{V(G)\}$	$\{V(G)\}$
9	LOS-set	$N(u) \bigtriangleup N(v), u, v \text{ adj}$	$\{V(G)\}$	$\{V(G)\}$
10	NLCS-set	$\{V(G)\}$	N[u] riangle N[v], u, v non-adj	$\{V(G)\}$
11	NLOS-set	$\{V(G)\}$	$N(u) \bigtriangleup N(v), u, v$ non-adj	$\{V(G)\}$
12	CD-code	N[u] riangle N[v], u, v adj	N[u] riangleq N[v], u, v non-adj	N(u)
13	OD-code	$N(u) \bigtriangleup N(v), u, v \text{ adj}$	$N(u) \bigtriangleup N(v), u, v$ non-adj	N[u]
14	LD-code	$N(u) \bigtriangleup N(v), u, v$ adj	N[u] riangleq N[v], u, v non-adj	N[u]
15	FD-code	N[u] riangle N[v], u, v adj	$N(u) \bigtriangleup N(v), u, v$ non-adj	N[u]

	Abbvr.	dist-1 separators	dist-2+ separators	nbhd
16	CTD-code	N[u] riangleq N[v], u, v adj	N[u] riangle N[v], u, v non-adj	N(u)
17	OTD-code	$N(u) \bigtriangleup N(v), u, v \text{ adj}$	$N(u) \bigtriangleup N(v), u, v$ non-adj	N(u)
18	LTD-code	$N(u) \bigtriangleup N(v), u, v$ adj	N[u] riangle N[v], u, v non-adj	N(u)
19	FTD-code	N[u] riangleq N[v], u, v adj	$N(u) \bigtriangleup N(v), u, v$ non-adj	N(u)
20	LCD-code	N[u] riangle N[v], u, v adj	$\{V(G)\}$	N[u]
21	LLD-code	$N(u) \bigtriangleup N(v), u, v$ adj	$\{V(G)\}$	N[u]
22	LCTD-code	N[u] riangle N[v], u, v adj	$\{V(G)\}$	N(u)
23	LLTD-code	$N(u) \bigtriangleup N(v), u, v \text{ adj}$	$\{V(G)\}$	N(u)
24	NLCD-code	$\{V(G)\}$	N[u] riangle N[v], u, v non-adj	N[u]
25	NLOD-code	$\{V(G)\}$	$N(u) \bigtriangleup N(v), u, v$ non-adj	N[u]
26	NLCTD-code	$\{V(G)\}$	N[u] riangle N[v], u, v non-adj	N(u)
27	NLOTD-code	$\{V(G)\}$	$N(u) \bigtriangleup N(v), u, v$ non-adj	N(u)

Thank You!

2

<ロ> (四) (四) (日) (日) (日)