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Identification problems in graphs

Graph G = (V, E)

Open neighborhood:
N@w)={u:uv e E}
N(7) = {6,8,10}

Closed neighborhood:
N[v] = N(v) U{v}
N[7] = {6,8,10,7}

“Code” C = set of
black vertices




(1) A detector can monitor upto distance 1
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Graph G = (V, E)

Open neighborhood:
N@)={u:uwv € E}
N(7) = {6,8,10}

Closed neighborhood:
N[v] = N(v) U{v}
N[7] = {6,8,10,7}

“Code” C = set of
{3,5,7} {7,8} | black vertices

Dominating set: A set C C V such that Nv]NC # 0 for allv e V
Total-dominating set: A set C C V such that N(v)NC # @ forallv e V

Locating set: A set C' C V such that
Nw)NC#N@w)NC < (N@u)AN@w)NC #0 for allu,v e V\C

Open-separator -}
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A vertex subset C of a graph G is called...

Locating set: if (N(u)AN(v))NC # 0 for all u,v € V\ C

No faults in detectors: Detectors can distinguish between its vertex and its neighbor

—
Closed-separating set: if (N[u]AN[v]) NC # 0 for all u,v € V

Detector fault type 1: Detector cannot distinguish between itself and its neighbors

Open-separating set: if (N(u)AN(v)) NC # 0 for all u,v € V
Detector fault type 2: Detector is completely disabled / destroyed

Full-separating set: if (N[uJAN[v]) NC = (N(u)AN(v)) NC # ( for all
u,veV
Detector fault type 1 and detector fault type 2
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A code C must intersect the following sets...

Sep L-Sep C-Sep O-Sep F-Sep
adj - N(u) A N(v) N[u] A N[ | N(w) & N(w) Nlu] A N[v]
non-adj | N[u] A N[v] N(u) A N(v)
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A code C must intersect the following sets...

Sep L-Sep C-Sep O-Sep F-Sep
Code | LD | LTD | CD | CTD | OD | OTD | FD | FTD

adj N(u) A N(v) N[u] A N[ | N(w) & Nw) Nlu] A N[v]
non-adj | N[u] A N[v] N(u) A N(v)
D/TD | N[u] | N(u) | N[u] | N(u) | N[u] | N(u) | N[u] | N(u)

Existence of codes..

no isolated vertices

no open twins

no closed twins

Codes || LD \ LTD || OD | OTD H CD | CTD || FD | FTD
X X
X X
X X
open twins N(u)=N(v) <= N(u)AN(@w)=0

closed twins Nu] =
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Year | Code Authors

1988: | LD-code P. Slater

1998: | CD-code M. Karpovsky, K. Chakrabarty & L. Levitin

2002: OTD-code I. Honkala, T. Laihonen, S Ranto

2010: S. Seo & P. Slater

2006: LTD-code T. Haynes, M. Henning & J. Howard
ITD-code
OD-code

2024: | FD-code D. Chakraborty & A. Wagler
FTD-code
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X € Copes = {LD,LTD,CD,CTD, 0D, OTD, FD, FTD}
X-number: vX(G) = min{|C| : C is an X-code of G}
Domination number: (G) = min{|C| : C' is a dominating set of G}

Total-domination number:
7(G) = min{|C| : C is a total-dominating set of G'}

¥(G) < ~%(G) if X is based on domination
1(G) < ~%(@) if X is based on total-domination

X' X stands for
} >< >< O¢D ’YX/(_G; <%(@)
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PG =T FTP(G) =4 (6) = 8.
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Part II. Structural aspects of
identification problems in graphs
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Locating dominating codes on subcubic graphs...
— joint work with Anni Hakanen and Tuomo Lehtila

(University of Turku, Finland)

Dominating set: A set C C V such that N[v]NC # @ for all v € V.

Locating set: A set C C V such that
Nu)NC#N@w)NC < (Nw)AN(@))NC #0 for all u,v € V\ C.

Subcubic graph: A graph in which each vertex is of degree at most 3.
Cubic graph: A graph in which each vertex is of degree exactly 3.
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Conjecture (Garijo, Gonzalez & Mérques, 2014)

If a connected graph G on n vertices is twin-free, then y*P(G) < 5

YP(G)=n—1,9(G) =1

Theorem (Ore, 1962)

If G is a connected graph on n vertices, then v(G) < 3.

(Dipayan Chakraborty) Identification problems in graphs



The n-half conjecture is true for...

twin-free (conjecture)
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Theorem (Foucaud and Henning, 2016)

If G is a twin-free, cubic graph of order n, then v*P(G) < T

Question (Foucaud and Henning, 2016)

Can we allow twins for cubic graphs? except G 2 K4, K33....777

Question (Foucaud and Henning, 2016)

Is the congjecture true for subcubic graphs?
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Theorem (Foucaud and Henning, 2016)

If G is a twin-free, cubic graph of order n, then v*P(G) < T

Question (Foucaud and Henning, 2016)

Can we allow twins for cubic graphs? except G 2 K4, K33....777
ANSWER: YES; except G % K4, K33. [C., Hakanen & Lehtila, 2024]

Question (Foucaud and Henning, 2016)

Is the conjecture true for subcubic graphs?
ANSWER: YES; also with closed twins and degree 3 open twins.
[C., Hakanen & Lehtild, 2024]
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Theorem (C., Hakanen and Lehtild, 2024)

Let G 2 K33 be a connected subcubic graph on n vertices, with at least
7 edges, and without open twins of degree 1 or 2. Then, ’yLD(G) = 7.

tion problems in graphs



Theorem (C., Hakanen and Lehtild, 2024)

If a connected subcubic graph G on n vertices is twin-free, then
@) <t
v > 5

Theorem (C., Hakanen and Lehtild, 2024)
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Theorem (C., Hakanen and Lehtild, 2024)

If a connected subcubic graph G on n vertices is twin-free, then
LD G < n
v ( ) >~ 95-

Theorem (C., Hakanen and Lehtild, 2024)

If G is a connected, open-twin-free, subcubic graph on n vertices other
than K3 or Ky, then v*P(G) < 2.

Theorem (C., Hakanen and Lehtild, 2024)

Let G 2 K33 be a connected subcubic graph on n vertices, with at least
7 edges, and without open twins of degree 1 or 2. Then, v*P(G) < ot
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Theorem (C., Hakanen and Lehtild, 2024)

If a connected subcubic graph G on n vertices is twin-free, then
P(G) < 5.

Proof technique.

e Proof by induction on n + m;
m = |E|. Determine that result is
true for some “smallest” n + m.
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Theorem (C., Hakanen and Lehtild, 2024)

If a connected subcubic graph G on n vertices is twin-free, then
P(G) <5

Proof technique.

e Proof by induction on n + m;
m = |E|. Determine that result is
true for some “smallest” n + m.

e Cut a convenient part of the graph.

e If rest is twin-free, choose a desired
solution.

e If not twin-free, choose another part
to cut and proceed.

Ol
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Theorem (C., Hakanen and Lehtild, 2024)

Let G 2 K33 be a connected subcubic graph on n vertices, with at least
7 edges, and without open twins of degree 1 or 2. Then, v*P(G) < it

Proof idea.
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Open

twins\

YYYYYYYY

Subcubic graph with degree 1 open twins not satisfying the conjecture.

Subcubic graph with degree 2 open twins not satisfying the conjecture.
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Locating dominating codes on block graphs...
— joint work with Florent Foucaud, Aline Parreau and Annegret Wagler

(Université Clermont Auvergne / Université Lyon 1)

Theorem (C., Foucaud, Parreau and Wagler, 2024)

For a connected twin-free block graph G on n vertices, y*P(G) < o

Proof sketch.
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Locating dominating codes on block graphs...
— joint work with Florent Foucaud, Aline Parreau and Annegret Wagler

(Université Clermont Auvergne / Université Lyon 1)

Theorem (C., Foucaud, Parreau and Wagler, 2024)

For a connected twin-free block graph G on n vertices, y*P(G) < %

Proof sketch.

e Partition V into two parts R and B.
e Both R and B are LD codes of G.

e Either one of |[R| or |B| < in.

(Dipayan Chakraborty) Identification problems in graphs 19 /38



A similar conjecture for LTD-codes...

Theorem (Cockayne, Dawes & Hedetniemi, 1980

)
If G is a connected graph on n vertices, then vy(G) < %n

Conjecture (Foucaud & Henning, 2016)

If a connected graph G on n vertices is twin-free, then y*'P(G) < %n

(Dipayan Chakraborty) Identification problems in graphs 20 /38



%-bound for locating total-dominating codes...
— joint work with F. Foucaud, A. Hakanen, M. Henning & A. Wagler

(Université Clermont Auvergne / Univ. of Johannesburg/ Univ. of Turku)

Theorem (C., Foucaud, Hakanen, Henning & Wagler, 2024)

If G is a connected subcubic graph on n vertices such that
G % Kl, KQ, K4,K173, then ”)/LTD(G) < %n

Theorem (C., Foucaud, Hakanen, Henning & Wagler, 2024)

If G is a connected, twin-free block graph on n vertices, then
AHD(@) < %n

(Dipayan Chakraborty) Identification problems in graphs



Part III. Algorithmic aspects of
identification problems in graphs
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Decision version of finding the minimum X-code in a graph:

X-CODE
Input: (G,k): A graph G and a positive integer k.
Question: Does there exist an X-code C of G such that |C| < k7

X-CobDE is NP-hard for all X € CoDESs!

(Dipayan Chakraborty) Identification problems in graphs



NP-hardness related to FD- and FTD-codes

— joint work with Annegret Wagler

(Université Clermont Auvergne)

Dominating set: A set C C V such that N[v]NC # @ for all v € V.
Total-dominating set: A set C' C V such that N(v)NC # @ for all v € V.

Full-separating set: if (N[uJAN[v]) NC = (N(u)AN(v)) NC # 0 for all
u,v € V.

Theorem (C. and Wagler, 2024)

If a graph G admits an FTD-code, then y¥'TP(G) — 1 < ~AFP(G) < ~FTP(G).

(a) Y"™P(G) =n (b) YP(G) =n—1
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FD-CobE
Input: (G,k): A graph G and a positive integer k.
Question: Does there exist an FD-code C of G such that |C] < k?

FTD-CoDE
Input: (G,k): A graph G and a positive integer k.
Question: Does there exist an FTD-code C of G such that |C| < k7

FD=FTD -1
Input: A graph G and an integer k.
Question: Is /"™°(G) = k and +"P(G) = k — 17

(Dipayan Chakraborty) Identification problems in graphs




Input: (G,k): A graph G and a positive integer k.
Question: Does there exist an FD-code C of G such that |C] < k?

Input: (G,k): A graph G and a positive integer k.
Question: Does there exist an FTD-code C of G such that |C| < k7

Input: A graph G and an integer k.
Question: Is /"™°(G) = k and +"P(G) = k — 17
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Theorem (C. and Wagler, 2024)

FTD-CoODE is NP-complete.

Proof sketch.

Reduction from 3-SAT with formula i) on n variables and m clauses.
Eg v=(xV-yVz)A(-zV-zVw)A(-yVzV-w).

clause gadget
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Theorem (C. and Wagler, 2024)

FTD-CoODE is NP-complete.

Proof sketch.

Reduction from 3-SAT with formula i) on n variables and m clauses.
Eg v=(xV-yVz)A(-zV-zVw)A(-yVzV-w).

3 satisfiable <= (G¥,k = Tn + 2m) is YES-instance of FTD-CODE
1 satisfiable <= 3C such that |C| = TP (GY¥) =k

‘ 1 satisfiable <= (G¥,7n + 2m — 1) is YES-instance of FD-CODE

(Dipayan Chakraborty) Identification problems in graphs



Decision version of finding the minimum X-code in a graph:

X-CoODE
Input: (G,k): A graph G and a positive integer k.
Question: Does there exist an X-code C of G such that |C] < k7

X-CobDE is NP-hard for all X € CODES!
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Decision version of finding the minimum X-code in a graph:

X-CoODE
Input: (G,k): A graph G and a positive integer k.
Question: Does there exist an X-code C of G such that |C] < k7

X-CobDE is NP-hard for all X € CODES!

What about Fized Parameter Tractable (FPT) algorithms?
i.e. given a graph parameter k, can we find an algorithm to find a
minimum code in time f(k)-n°M? e.g. f(k) = 2, ok 22"
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Decision version of finding the minimum X-code in a graph:

X-CoODE
Input: (G,k): A graph G and a positive integer k.
Question: Does there exist an X-code C of G such that |C] < k7

X-CobDE is NP-hard for all X € CODES!

What about Fized Parameter Tractable (FPT) algorithms?
i.e. given a graph parameter k, can we find an algorithm to find a
minimum code in time f(k)-n°M? e.g. f(k) = 2, ok 22"

Note: X-CobE is FPT when parameterized by solution size k.
Reason: |V(G)| = O(2F). Thus brute force gives 20+ . nO0) runtime.
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FPT algorithms for locating dominating code

joint work with Florent Foucaud, Diptapriyo Majumdar and Prafullkumar Tale

(Université Clermont Auvergne / IIIT Delhi / IISER Bhopal)

Vertex cover: A set S C V such that V' \ S is an independent set.
Vertex cover number: vc = min{|S| : S is a vertex cover of G}

O

Theorem (C., Foucaud, Majumdar & Tale, 2024)

LD-CODE admits an algorithm running in time 20(velogve) . nOQ1),

(Dipayan Chakraborty) Identification problems in graphs



Algorithm (by dynamic programming):

e Find a minimum vertex cover in time 1.2528% - n©(1) [Harris &
Narayanaswamy, STACS 2024].

e Build optimum solution by the dynamic programming:

opt[i — 1,P,S], opt[i, P, S| = min |C],

opt[i, P, S]=min< 1+ min optli —1,P,S]. | C C{ri,r2,...,7i},
PP (ri)=P,
S'UN(r;)=S C ~ (va)

e Algorithm brute forces all partitions of vertex cover.
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Algorithm (by dynamic programming):

e Find a minimum vertex cover in time 1.2528% - n©(1) [Harris &
Narayanaswamy, STACS 2024].

e Build optimum solution by the dynamic programming:

optli — 1, P, 5], Running time:
opt[i, P,S]=min{ 14+ min  opt[i — 1,P’,S]. | P: 2vclosve. |R|
P'@P(r:i)=P, v

S'UN(r;)=S S: 2

e Algorithm brute forces all partitions of vertex cover.

undominated
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Conclusion




e Introduction of new codes: OD, FD and FTD.

e Proving several combinatorial conjectures and results on
bounds of all eight code numbers of graphs.

e Such results have been proven on several graph classes like
subcubic, block, split, cobipartite, trees, triangle-free etc.

e NP-hardness related results for the new codes introduced.

e FPT-algorithms for LD-CODE with respect to several graph
parameters.

e Tight lower bounds for running times of algorithms of
LD-CoDE under well-accepted hardness hypothesis.

(Dipayan Chakraborty) Identification problems in graphs



Some questions...

Question (Conjecture: Garijo, Gonzalez & Méarques, 2014)

Can the n-half conjecture (v*P(G) < %) be proven in general?

Question (Conjecture: Foucaud & Henning, 2016)

Can the n-two-thirds conjecture (Y“™°(G) < 2n) be proven in general?

What is the characterization of (twin-free) (sub)cubic graphs for which
the above conjectures are tight?

(Dipayan Chakraborty) Identification problems in graphs



Some questions...

Question

Can the FD = FTD — 1 problem be polynomial-time solvable on some
graph classes? For example, for trees?

\

Question

Can the OD = OTD — 1 problem be polynomial-time solvable on some
graph classes?

FPT-algorithms for other codes (especially, the newer ones) in terms of
graph parameters like vertex cover number, treewidth, etc?

(Dipayan Chakraborty) Identification problems in graphs



A code must intersect the following sets...

Sep L-Sep C-Sep O-Sep F-Sep
Code | LD | LTD | CD | CTD | OD | OTD | FD | FTD

adj N(u) A N(v) Nlu] A Nv]
nonadj | N AN | AN N ANE) =T
D/TD | N[u] | N(u) | N[u] | N(w) | N[u] | N(u) | N[u] | N(u)

(Dipayan Chakraborty)

Identification problems in graphs




A code must intersect the following sets...

Sep L-Sep C-Sep O-Sep F-Sep
Code | LLD | LLTD | CD | CTD | OD | OTD | FD | FTD

adj N(u) A N(v) Nlu] A Nv]
non-adj Vv Nul & Nlo] | Nu) & N(v) N(u) A N(v)
D/TD | Nu] | N(w) | N[u] | N(w) | N[u] | N(u) | N[u] | N(u)
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subset Abbvr. dist-1 separators dist-2+ separators nbhd
1 V. subset {V(G@)} {V(G)} {V(G)}
2 D-set {V(@)} {V(G)} Nlu]
3 TD-set {V(&@)} {V(G)} N(u)
4 CS-set Nlu] A N[v], u,v adj Nlu] A N[v], u,v non-adj | {V(G)}
5 OS-set N(u) A N(v), u,v adj | N(u) A N(v), u,v non-adj | {V(G)}
6 LS-set N(u) A N(v), u,v adj | N[u] A N[v], u,v non-adj | {V(G)}
7 FS-set Nu] A N[v], u,v adj | N(u) A N(v), u,v non-adj | {V(G)}
8 LCS-set Nlu] A N[v], u,v adj {V(G)} {V(G)}
9 LOS-set N(u) A N(v), u,v adj {V(G)} {V(G)}
10 NLCS-set {V(G)} N[u] A N[v], w,v non-adj | {V(G)}
11 NLOS-set {V(G)} N(u) A N(v), u,v non-adj | {V(G)}
12 CD-code Nlu] A N[v], uw,v adj N[u] A N[v], w,v non-adj N(u)
13 OD-code | N(u) A N(v), u,v adj | N(u) A N(v), u,v non-adj Nu]
14 LD-code | N(u) A N(v), u,vadj | Nu] A N[v], u,v non-adj Nu]
15 FD-code N[u] A N[v], w,v adj | N(u) A N(v), u,v non-adj Nu]

(Dipayan Chakraborty)

ation problems in graphs




Abbvr. dist-1 separators dist-2+ separators nbhd
16 CTD-code Nlu] A N[v], uw,v adj N[u] A N[v], w,v non-adj N(uw)
17 OTD-code N(u) A N(v), u,v adj | N(u) A N(v), u,v non-adj | N(u)
18 LTD-code N(u) A N(v), u,v adj | N[u] A N[v], w,v non-adj N(uw)
19 FTD-code Nlu] A N[v], w,v adj | N(u) A N(v), u,v non-adj | N(u)
20 LCD-code Nlu] A N[v], u,v adj {V(G)} Nlu]
21 LLD-code N(u) A N(v), u,v adj {V(G)} Nlu]
22 LCTD-code Nlu] A N[v], u,v adj {V(G)} N(uw)
23 LLTD-code N(u) A N(v), u,v adj {V(G)} N(uw)
24 | NLCD-code {V(G)} N[u] A N[v], w,v non-adj Nlu]
25 NLOD-code {V(G)} N(u) A N(v), u,v non-adj | Nlu]
26 | NLCTD-code {V(G)} N[u] A N[v], w,v non-adj N(uw)
27 | NLOTD-code {V(G)} N(u) A N(v), u,v non-adj | N(u)

(Dipayan Chakra
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Thank Youl
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